49 research outputs found

    Regulators Associated with Clinical Outcomes Revealed by Dna Methylation Data in Breast Cancer

    Get PDF
    The regulatory architecture of breast cancer is extraordinarily complex and gene misregulation can occur at many levels, with transcriptional malfunction being a major cause. This dysfunctional process typically involves additional regulatory modulators including DNA methylation. Thus, the interplay between transcription factor (TF) binding and DNA methylation are two components of a cancer regulatory interactome presumed to display correlated signals. As proof of concept, we performed a systematic motif-based in silico analysis to infer all potential TFs that are involved in breast cancer prognosis through an association with DNA methylation changes. Using breast cancer DNA methylation and clinical data derived from The Cancer Genome Atlas (TCGA), we carried out a systematic inference of TFs whose misregulation underlie different clinical subtypes of breast cancer. Our analysis identified TFs known to be associated with clinical outcomes of p53 and ER (estrogen receptor) subtypes of breast cancer, while also predicting new TFs that may also be involved. Furthermore, our results suggest that misregulation in breast cancer can be caused by the binding of alternative factors to the binding sites of TFs whose activity has been ablated. Overall, this study provides a comprehensive analysis that links DNA methylation to TF binding to patient prognosis

    AOBase: a database for antisense oligonucleotides selection and design

    Get PDF
    Antisense oligonucleotides (ODNs) technology is one of the important approaches for the sequence-specific knockdown of gene expression. ODNs have been used as research tools in the post-genome era, as well as new types of therapeutic agents. Since finding effective target sites within RNA is a hard work for antisense ODNs design, various experimental methods and computational approaches have been proposed. For better sharing of the experimented and published ODNs, valid and invalid ODNs reported in literatures are screened, collected and stored in AOBase. Till now, ∼700 ODNs against 46 target mRNAs are contained in AOBase. Entries can be explored via TargetSearch and AOSearch web retrieval interfaces. AOBase can not only be useful in ODNs selection for gene function exploration, but also contribute to mining rules and developing algorithms for rational ODNs design. AOBase is freely accessible via

    Selection of antisense oligonucleotides based on multiple predicted target mRNA structures

    Get PDF
    BACKGROUND: Local structures of target mRNAs play a significant role in determining the efficacies of antisense oligonucleotides (ODNs), but some structure-based target site selection methods are limited by uncertainties in RNA secondary structure prediction. If all the predicted structures of a given mRNA within a certain energy limit could be used simultaneously, target site selection would obviously be improved in both reliability and efficiency. In this study, some key problems in ODN target selection on the basis of multiple predicted target mRNA structures are systematically discussed. RESULTS: Two methods were considered for merging topologically different RNA structures into integrated representations. Several parameters were derived to characterize local target site structures. Statistical analysis on a dataset with 448 ODNs against 28 different mRNAs revealed 9 features quantitatively associated with efficacy. Features of structural consistency seemed to be more highly correlated with efficacy than indices of the proportion of bases in single-stranded or double-stranded regions. The local structures of the target site 5' and 3' termini were also shown to be important in target selection. Neural network efficacy predictors using these features, defined on integrated structures as inputs, performed well in "minus-one-gene" cross-validation experiments. CONCLUSION: Topologically different target mRNA structures can be merged into integrated representations and then used in computer-aided ODN design. The results of this paper imply that some features characterizing multiple predicted target site structures can be used to predict ODN efficacy

    Approaches for integrating heterogeneous RNA-seq data reveal cross-talk between microbes and genes in asthmatic patients.

    Get PDF
    Sputum induction is a non-invasive method to evaluate the airway environment, particularly for asthma. RNA sequencing (RNA-seq) of sputum samples can be challenging to interpret due to the complex and heterogeneous mixtures of human cells and exogenous (microbial) material. In this study, we develop a pipeline that integrates dimensionality reduction and statistical modeling to grapple with the heterogeneity. LDA(Latent Dirichlet allocation)-link connects microbes to genes using reduced-dimensionality LDA topics. We validate our method with single-cell RNA-seq and microscopy and then apply it to the sputum of asthmatic patients to find known and novel relationships between microbes and genes

    Social Europe. No 2/87

    Get PDF
    BACKGROUND: DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA methylation at promoters is widely recognized to be associated with transcriptional repression, many aspects of DNA methylation remain not fully understood, including the quantitative relationships between DNA methylation and expression levels, and the individual roles of promoter and gene body methylation. RESULTS: Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA sequencing data from human samples and cell lines. We find that while promoter methylation inversely correlates with gene expression as generally observed, the repressive effect is clear only on genes with a very high DNA methylation level. By means of statistical modeling, we find that DNA methylation is indicative of the expression class of a gene in general, but gene body methylation is a better indicator than promoter methylation. These findings are general in that a model constructed from a sample or cell line could accurately fit the unseen data from another. We further find that promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify low expression. Finally, we obtain increased modeling power by integrating histone modification data with the DNA methylation data, showing that neither type of information fully subsumes the other. CONCLUSION: Our results suggest that DNA methylation outside promoters also plays critical roles in gene regulation. Future studies on gene regulatory mechanisms and disease-associated differential methylation should pay more attention to DNA methylation at gene bodies and other non-promoter regions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0408-0) contains supplementary material, which is available to authorized users

    Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis.

    Get PDF
    Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis

    Analyses of non-coding somatic drivers in 2,658 cancer whole genomes.

    Get PDF
    The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available

    Transcription factors binding in different resolutions.

    No full text
    <p>A) Enrichment of HOT (high-occupancy target) and XOT (extreme-occupancy target) regions near TAD boundaries in hES cell. Boundaries are identified by MrTADFinder at a resolution <i>γ</i> = 2.75. The y-axis is normalized by a null model that peaks are randomly distributed in along the chromosome. B) A logistic regression model to classify real TAD boundaries and random boundaries based on the binding pattern of 60 TFs. The most influential factors responsible for TAD boundaries formation at different resolutions are listed. Factors with a positive coefficient have a direct effect on border establishment or maintenance, whereas factors like MYC has a negative effect. The factors are sorted by corresponding P-values and only the significant factors are displayed.</p

    MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions - Fig 4

    No full text
    <p>A) Distribution of house-keeping genes and tissue-specific genes near TAD boundaries at different resolutions. House-keeping genes are more enriched near TAD boundaries as compared to tissue-specific genes. B) House-keeping genes and tissue-specific genes show different levels of enrichment near TAD boundaries at different resolutions. Tissue-specific genes show a general decreasing trend, whereas the number of house-keeping genes remains flat until a high resolution.</p
    corecore